Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging.

نویسندگان

  • Shuo Pang
  • Chao Han
  • Jessey Erath
  • Ana Rodriguez
  • Changhuei Yang
چکیده

The capability to perform multicolor, wide field-of-view (FOV) fluorescence microscopy imaging is important in screening and pathology applications. We developed a microscopic slide-imaging system that can achieve multicolor, wide FOV, fluorescence imaging based on the Talbot effect. In this system, a light-spot grid generated by the Talbot effect illuminates the sample. By tilting the excitation beam, the Talbot-focused spot scans across the sample. The images are reconstructed by collecting the fluorescence emissions that correspond to each focused spot with a relay optics arrangement. The prototype system achieved an FOV of 12 × 10 mm(2) at an acquisition time as fast as 23 s for one fluorescence channel. The resolution is fundamentally limited by spot size, with a demonstrated full-width at half-maximum spot diameter of 1.2 μm. The prototype was used to nimage green fluorescent beads, double-stained human breast cancer SK-BR-3 cells, Giardia lamblia cysts, and the Cryptosporidium parvum oocysts. This imaging method is scalable and simple for implementation of high-speed wide FOV fluorescence microscopy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy.

Here we report a low-cost and simple wide field-of-view (FOV) on-chip fluorescence-imaging platform, termed fluorescence Talbot microscopy (FTM), which utilizes the Talbot self-imaging effect to enable efficient fluorescence imaging over a large and directly scalable FOV. The FTM prototype has a resolution of 1.2 μm and an FOV of 3.9 mm × 3.5 mm. We demonstrate the imaging capability of FTM on ...

متن کامل

Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator.

Time-lapse or longitudinal fluorescence microscopy is broadly used in cell biology. However, current available time-lapse fluorescence microscopy systems are bulky and costly. The limited field-of-view (FOV) associated with the microscope objective necessitates mechanical scanning if a larger FOV is required. Here we demonstrate a wide FOV time-lapse fluorescence self-imaging Petri dish system,...

متن کامل

Focal plane tuning in wide-field-of-view microscope with Talbot pattern illumination.

We have developed a focal plane tuning technique for use in focus-grid-based wide-field-of-view microscopy (WFM). In WFM, the incidence of a collimated beam on a mask with a two-dimensional grid of aperture produced the Talbot images of the aperture grid. The Talbot pattern functioned as a focus grid and was used to illuminate the sample. By scanning the sample across the focus grid and collect...

متن کامل

Large - field - of - view , multi - perspective Talbot microscopy

Common microscope objectives have fields of view (FOVs) of less than a few millimeters because of limits imposed by optical aberrations. To scale up the FOVs, additional lens elements and heroic design efforts are required to compensate for the aberrations, leading to reduced transmissions and higher system costs. Such FOV limitations have thus become amajor bottleneck in microscopy for large-s...

متن کامل

Multi-perspective Fluorescence Talbot Microscopy

We demonstrate a long imaging depth, multi-perspective fluorescence scanning microscopy based on Talbot effect generated from a microlens array. An object with two layers that are 155μm apart was reconstructed from different perspectives. OCIS codes: (110.1758) Computational imaging; (180.2520) Fluorescence microscopy

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 21 12  شماره 

صفحات  -

تاریخ انتشار 2013